%I
%S 1,1,5,9,45,121,521,1757,7273,26229,110901,408221,1748925,6649037,
%T 28453805,111004789,477102029,1882048601,8147322225,32485684073,
%U 140960817957,568975900137,2472480371173,10059701451345,43854142070437,179454745229265,784064426522837,3229517668816813,14124649304990029
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(1, 1, 0), (1, 1, 1), (1, 0, 1), (1, 1, 1), (1, 1, 1)}
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0  Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[1 + i, 1 + j, 1 + k, 1 + n] + aux[1 + i, 1 + j, 1 + k, 1 + n] + aux[1 + i, j, 1 + k, 1 + n] + aux[1 + i, 1 + j, 1 + k, 1 + n] + aux[1 + i, 1 + j, k, 1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008
